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Abstract

We review the new computation of the cohomology of a compact Lie group by Mark
Reeder [1]. Let G be a compact connected Lie group with a maximum torus T . g and
t respectively are their Lie algebra respectively. Let W be the Weyl group. First we
prove that as a W -module H(G/T ) is isomorphic to both the regular representation
of W and the space H of W -harmonic polynomials on t∗. And H(T ) is naturally
isomorphic to the exterior algebra of t∗. Then we construct a map: Ψ : G/T × T → G
with nonzero degree and find that H(G) is isomorphic to [H(G/T )⊗H(T )]W by Ψ∗.
The latter space, which equals [H ⊗ Λt∗]W , is computed by Solomon’s determination
of the W -invariant differential forms on t with polynomial coefficients.

0 Basic facts on compact Lie groups

Let G be a compact connected Lie group with a maximum torus T . T is abelian and its own
centralizer in G. The Weyl group W = N(T )/T is a finite group. Let g and t be the Lie
algebras for G and T respectively. Because G is compact there is an inner product <,> on
g which is invariant by the adjoint action Ad(G). Let m be the orthogonal complement of t

in g with respect to this inner product, g = t⊕ m. This implies m is Ad(T )-invariant. The
infinitesimal version of invariance of the inner product is

< [X,Y ], Z > + < Y, [X,Z] >= 0, ∀ X,Y, Z ∈ g

A regular element of t is one whose Ad(G)-centralizer is G. We can find a regular element
in t: since topologically T is Sl where l = dimT , there is an element t0 of T whose powers
form a dense set of T . Hence C(t0) = C(T ) = T . We choose an element H0 in t such that
expH0 = t0. If Ad(g)H0 = H0 for some g ∈ G, then Ad(g)expH0 = exp(Ad(g)H0) = t0 and
g ∈ t.

The action Ad(G) on g induces a action of W on t. The injective map i : t → g induces
a bijective map

ĩ : t/Ad(W ) → g/Ad(G) .
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T acts on m via Ad. There is no element in m which is invariant under Ad(T ), otherwise t is
not a maximum abelian subalgebra of g. Therefore because T is a torus, all the irreducible
components of m are real 2-dimensional and T acts on them by rotation: m = m1 ⊕ ...mv.
There are a finite set of linear functionals {α1, ..., αv} such that for H ∈ t the eigenvalues
of AdexpH on mi are exp(±√−1αi(H)). We choose a regular element H0 ∈ t and adjust
the signs of αi by requiring αi(H0) > 0. Then we define the positive roots system ∆+ =
{α1, ..., αv}. The action of W on t is generated by the reflection (with invariant inner product)
about the kernels of the positive roots. There are also a subset π of ∆+ which is called the
simple roots system and is a basis of t∗. The action of W on t is actually generated by the
reflection (with invariant inner product) about the kernels of the simple roots.

We use the notation of Chevalley’s basis for Lie algebra. Let {Xi, Xi+v} be an orthogonal
basis for mi and with the basis:

ad(H) |mi
=

(
0 ai(H)

−ai(H) 0

)

Hence for 1 ≤ i, j ≤ 2v, H ∈ t, < H, [Xi, Xj] >=< [H, Xi], Xj >. From the matrix we know
that it is nonzero only when i − j = ±v. So that if i − j 6= ±v, [Xi, Xj] is perpendicular
to mi and [Xi, Xj] ∈ m. Otherwise we define Hi = [Xi, Xi+v]. Span{H, Xi, Xi+v} is Lie
subalgebra which is isomorphic to su(2).

1 Invariant theory

Here we cite the invariant theory of the action of Weyl group from the book [2, chapter 2].

Let t∗ be the dual space of t. Weyl group acts on t∗ by contragredient representation:

(wλ)(H) = λ(Ad(w−1)H) ∀w ∈ W,λ ∈ t∗, H ∈ t

And let the graded algebras S = ⊕∞p=0S
p and Λ = ⊕l

p=0Λ
p be the symmetric and exterior

algebras on t∗. (l = dimt∗) W acts on S and Λ naturally. Because as a ring S is isomorphic
to the real polynomials ring in l variables, we will call the elements in S polynomials later.

Lemma 1.1. If g is a simple Lie algebra, then each Λp (0 ≤ p ≤ l) is an irreducible
W-module.

Let S W be the ring of invariant polynomials about the action of Wyel group on P. Cheval-
ley’s theorem [2] gives the ring structure of S W .

Theorem 1.2. (Chevalley) The ring S W has algebraically independent homogenous gen-
erators F1, ..., Fl, hence is a polynomial ring. If we number these generators so that degF1 ≤
...degF2 ≤ ...degFl and let mi+1 =degFi, then m1+...+ml = v and (1+mi)...(1+ml) = |W |.
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Remark 1.3. If g is a simple Lie algebra, then t∗ is an irreducible W-module. Specially,
there is no invariant element in t∗ and degFi > 1.

Remark 1.4. We will see that m1, ...ml determine the betti numbers of a compact connected
Lie group. We have known the numbers m1, ...ml for classical groups [3]. For a general
compact connected Lie group, we know its Lie algebra is the direct sum of its center and
simple Lie algebras and then this Lie group can be covered by the product of a central torus
with a direct product of classical groups. Hence we can also get its m1, ...ml.

We determine the W-module structure of the polynomial ring S . Let D be the ring of
constant coefficient differential operators on P. D is naturally isomorphic to the symmetric
algebra S(t). Hence W acts on D and we defined DW to be the W -invariant operators. Let
H be the set of ”harmonic polynomials” in P:

H = {f ∈ S : DW f = 0}

Because DW is a homogenous subring in D , f ∈ H if and only if f is annihilated by all the
homogenous elements in DW . Hence H is also a homogenous subring, and H = ⊕∞p=0H

p.
By the definition of the action W on t∗,

(wD)(wf) = w(Df), ∀D ∈ D , f ∈ S , w ∈ W

This implies H is a W -module. Let I be the ideal in S generated by the elements of S W

of positive degree. I is also a W -module.

Theorem 1.5. (1) DimH = |W |. (2) S = H ⊕I . (3) The multiplication H ⊗S W → S
is a linear isomorphism.

Corollary 1.6. As W -modules, H ' S /I .

In section 3, we will find that as W -module, H and S /I are isomorphic to the regular
representation of Weyl Group. 1

Corollary 1.7.
∑

p≥0 dim H ptp =
∏l

i=1(1 + t + t2 + ... + tmi).

Proof. From theorem 1.5 (3), we know that (⊕H p)⊗ (⊕S W,q) ' (⊕S s). Hence

(
∑
p≥0

dimH ptp)(
∑
q≥0

dimS W,qtq) =
∑
s≥0

dimS sts

1We will use the fact later in this section to determine the dimension of (S /I ⊗ Λ)W , but of course we
will use this dimension only after section 3.
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It is easy to see that for a polynomial ring on one variable the generating function is 1
1−t

.

Therefore S , a polynomial ring on l variables, has the generating function ( 1
1−t

)l. By

theorem 1.2, S W , a polynomial ring on l polynomials with degrees m1 + 1, ..., ml + 1, has
the generating function

∏
i(

1
1−tmi+1 ). Then we get

∑
p≥0 dim H ptp =

∏l
i=1(1+t+t2+...+tmi)

which shows that dimH v = 1 and H v = 0 for p > v.

Definition 1.8. Let V be an irreducible W -module. Suppose V is a constituent of S b, and
not a constituent of S c, for any c < b. We call b the birthday of V .

Remark 1.9. For any D ∈ DW , D commutes with the action of W. Hence D is a homomor-
phism between W -modules. If b is the birthday of V , by Schur’s lemma D must annihilate
the respective constituent in S c and then this constituent is in H c.

W acts on t via adjoint action. Let ε(w) = sign(detAd(w)). ε forms a one-dimensional
representation of W. We will find its birthday. We define the primordial harmonic polynomial
to be

Π =
∏

α∈∆+

α ∈ S v.

Lemma 1.10. (1) Π transforms by the sign character ε of W . (2) v is the birthday of ε
and H v = span{Π}.
Proof. Weyl group is generated by the refection about the simple roots hyperplanes. Let αi

be a simple root and ri be the respective refection. ri[∆
+] = ∆+\{−αi}. Hence riΠ = −Π.

Any w ∈ W is a product of ri’s, so wΠ = ε(w)Π. Any polynomial transforming by ε must
vanish on all roots hyperplanes, so it could be divisible by any root. Obviously any root is
an irreducible elements in the ring S , so the polynomial must be divisible by Π and has
degree no less than Π. Therefore v is the birthday of ε and Π is harmonic. By corollary 1.7,
H v = span{Π}.
Now consider the algebra S ⊗Λ of differential forms on t with polynomial coefficients. The
following theorem [2] describes the W -invariants in S ⊗ Λ.

Theorem 1.11. (Solomon) The space (S ⊗ Λ)W of W -invariants in S ⊗ Λ is a free
S W -module with basis

{dFi1 ∧ ... ∧ dFiq : 1 ≤ i1 < ... < iq ≤ l}.

Lemma 1.12.2 Let F1, ..., Fl be l polynomials in a real polynomial ring in l variables.
F1, ..., Fl are algebraically independent if and only if dF1 ∧ ... ∧ dFl is not zero.

2I thank prof. Sjamaar’s help on this lemma.
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Proof. It is easy to see that if dF1 ∧ ... ∧ dFl is nonzero then F1, ..., Fl are algebraically
independent. Consider y1 = F1(x1, ...xl), ..., yl = Fl(x1, ...xl) as a map from Rl to Rl. Suppose
there is a polynomial Q(y1, ...yl) such that Q(F1, ..., Fl) = 0, i.e., Q’s zero set contains the
image of the map. But dF1 ∧ ... ∧ dFl is nonzero, there must be a point with nondegenerate
Jacobian. By inverse function theorem, the image contains a open set. Then the fact that
Q(y1, ...yl) vanishes on a open set implies Q ≡ 0.

The converse case is harder to proof. Here we use the proof from [2, Chapter III]. We
know the R[x1, ..., xl] has transcendency degree l, so any l + 1 polynomials are algebraically
dependent. In particular, xi, F1, ..., Fl are algebraically dependent. We choose a polynomial
Qi(xi, z1, ..., zl) of minimal degeree ei > 0 in xi such that Qi(xi, F1, ..., Fl) = 0. Applying
∂/∂xk, we obtain

l∑
r=1

∂Qi

∂zr

(xi, F1, ..., Fl)
∂Fr

∂xk

+ δik
∂Qi

∂xk

(xi, F1, ..., Fl) = 0

Let

Air =
∂Qi

∂zr

(xi, j1, ...jr), Brk =
∂Fr

∂xk

, Cij = δik
∂Qi

∂xi

(xi, j1, ...jr)

We get the matrix identity (We can regard elements of matrix as elements in the quotient
field of polynomial ring)

AB = C

If detC = 0, then there is a i such that

∂Qi

∂xi

(xi, j1, ...jr) = 0.

This is a contradiction to our assumption of minimal degree. Hence detB 6= 0 and dF1∧ ...∧
dFl is nonzero.

Proof of theorem 1.11. Let x1, ..., xl be a basis of t∗.

dFi1 ∧ ... ∧ dFil = Jdx1 ∧ ... ∧ dxl.

By lemma 1.12., the Jacobian J is a nonzero polynomial of degree m1 + ... + ml = v. The
left side is W -invariant and dx1 ∧ ...∧ dxl transforms by the sign character ε. Hence J must
also transforms by ε and because it has degree v J is a nonzero multiple of the primordial
harmonic polynomials Π.

dFi1 ∧ ... ∧ dFil = cΠdx1 ∧ ... ∧ dxl, c 6= 0

For a sequence I = i1 < ... < iq, define its complement to be I ′, the increasing sequence of all
integers in {1, ...l}− {i1, ..., iq}. Let dFI = dFi1 ∧ ...∧ dFiq and k be the quotient field of S .
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If
∑

I fIdFI = 0, after multiplying by dFS′ , we get
∑

I fIdFI ∧ dFS′ = 0. All the I’s which
are not S but have the length of S are killed. Because the component which has degree l
about exterior product ±cgSπdx1...dxl should also be zero, we get fS = 0. Therefore dFI ’s
are k-independent.dimk(k ⊗ Λ) = dimRΛ = 2l and there are 2l different I’s, so dFI ’s form a
k-basis of k⊗Λ and are in particular linearly independent over S W . Now suppose ω ∈ S ⊗Λ
is homogenous about the degree of exterior product and W -invariant. Let ω =

∑
I gIdFI ,

gI ∈ k. Multiplying by dFS′ again, we have

ω ∧ dFS′ = ±cgSπdx1...dxl ∈ [S ⊗ Λ]W

Hence gSΠ should be a polynomial in S and transforms by ε. So in S , Π|gSΠ. This implies
gS should be a polynomial in S and W -invariant. Therefore the space (S ⊗ Λ)W is a free
S W -module with basis dFI .

We need work a little more on the structure of (S /I ⊗ Λ)W .

Corollary 1.13. For ω ∈ (S ⊗ Λ), Let ω′ ∈ (S /I ⊗ Λ) be the different form with
coefficients of ω module I . Then {dF ′

i1
∧ ... ∧ dF ′

iq : 1 ≤ i1 < ... < iq ≤ l} is a basis of

(S /I ⊗ Λ)W .

Proof. We have an exact sequence

0 → (I ⊗ Λ)W → (S ⊗ Λ)W ω 7→ω′→ (S /I ⊗ Λ) → 0

Form Solomon’s theorem {dF ′
i1
∧ ... ∧ dF ′

iq : 1 ≤ i1 < ... < iq ≤ l} spans (S /I ⊗ Λ)W with
coefficients in R. (All W -invariant polynomials with degree larger than zero are in I .) To
prove it is a basis, we use the fact S /I affords the regular representation and the following
lemma to find the real dimension of (S /I ⊗ Λ)W :

Lemma 1.14. Let W be a finite group. Let (W,V ) be the regular representation of W and
(W,U) be any representation. Then dim(V ⊗ U)W = dimU .

Proof. The character of regular representation χV (e) = |W |, χV (w) = 0, w 6= e. So
χU⊗V (e) = |W |dimU , χU⊗V (w) = 0, w 6= e. It implies dim(V ⊗ U)W = dimU .

Therefore dimR(S /I ⊗ Λ)W = 2l and corollary 1.13 holds. We have the following

Corollary 1.15. (1) (S /I ⊗Λ)W is an exterior algebra with generators dF ′
i ∈ (S /I mi ⊗

Λ1)W , 1 ≤ i ≤ l. (2) Multiplicity formula

v∑
n=0

dimHomW (Λq, H n)un = sq(u
m1 , ...uml)
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Proof. (1) It follows corollary 1.13. (2) As W -modules, HomW (Λq, H n) ' [(Λq)∗ ⊗
H n]W . Any real representation is isomorphic to its contragredient representation, there-
fore dimHomW (Λq, H n) = dim[H n ⊗ Λq]W . Because (S /I )n ' H n and from (1), the
dimension of dim[H n ⊗ Λq]W is the number of different products of generators with total
degree of polynomial n.

Remark 1.16. In particular, the birthday of Λq is m1 + ... + mq, if g is simple.

2 Invariant differential forms

Let G be a compact connected Lie Group which acts transitively on a manifold M . This
implies M is also compact. Let τg be the diffeomorphism of M corresponding to g ∈ G.

Lemma 2.1. τ ∗g acts trivially on the cohomology of M .

Proof. Because G is compact and connected, for any g ∈ G there is a X ∈ g such expX = g.
Let

Am : G → M, g 7→ gm

Define X̃|m = (Am)∗(X) so that X̃ is a smooth vector field on M. For any closed form ω

d

dt
|t=t0τ

∗
exptXω = LX̃τ ∗expt0Xω = i(X̃)τ ∗expt0Xdω + d ◦ i(X̃)τ ∗expt0Xω = d ◦ i(X̃)τ ∗expt0Xω

Hence

τ ∗g ω − ω = d

∫ 1

0

i(X̃)τ ∗exptXωdt

τ ∗g does’t change the cohomology class of ω.

Definition 2.2. An invariant differential form of M is a differential form ω on M such that
τ ∗g ω = ω for all g ∈ G. Ω(M)G is the set of invariant differential forms.

Lemma 2.3. For any closed form ω on M, there is an invariant form ω′ which is in the same
cohomology class of ω.

Proof. Because G is compact, there is an invariant integration on G. Let ω′ =
∫

G
τ ∗g ω. Then

τ ∗hω′ =
∫

G

τ ∗ghω =

∫

G

τ ∗g ω = ω′
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The exterior derivative d commutes with τ ∗g , so we have the subcochain {H(M)G, d} of
invariant forms on M . There is a natural mapping i : H(M)G → H(M). Lemma 2.3 shows
that i is surjective. If w is an invariant exact form, say, w = dα, then w = d

∫
G

τ ∗g a. Therefore
i is also injective and we have the following lemma

Lemma 2.3. As cochains, {H(M)G, d} ' {H(M), d}.

We will use the Lie algebra of G to compute this cochain. Choose a point o ∈ M , and
let K ⊂ G be its stabilizer. Since G is compact, G/K is a homogeneous manifold which
is isomorphic to M . We have an orthogonal decomposition g = r ⊕ n, where r is the Lie
algebra of K. Ad(K) acts on r trivially so that this decomposition is kept by Ad(K). n is
isomorphic to the tangent space To(M). Let (Λpn∗)K be the subspace of elements in Λpn∗

invariant under Ad(K).

Lemma 2.4. As linear spaces, Ωp(M)G ' (Λpn∗)K. Furthermore, Ω(M)G ' (Λn∗)K as
rings.

Proof. (Ao)∗ is an isomorphism between n and To(M) which is also a equivalence of K’s
actions via Ad(K) and (τK)∗. The mapping induces the isomorphism between (Λpn∗)K

and (Λp(T ∗
o M))K . We claim that the later space is linearly isomorphic to Ωp(M)G. Let

l : Ωp(M)G → Λp(T ∗
o M)K be the mapping:

ω 7→ ω|o, ω ∈ Ωp(M)G

It is well-defined because (τ ∗k )ω|o = ω|o. It’s also injective because if ω|o is zero by invariance
and the fact G acts on M transitively ω is zero everywhere. To show it is surjective we
define a differential form α̃ on M for any element α ∈ Ωp(M)G: α̃|go = (τ ∗g−1)α|o. It is well

defined because if g1o = go then g−1
1 g ∈ K and (τ ∗

g−1
1

)α|o = (τ ∗g−1)(τ ∗g−1
1 g

)α|o = (τ ∗g−1)α|o. α̃ is

also G-invariant, (τ ∗g α̃)|m = (τ ∗g )α̃|gm = (τ ∗g )(τ ∗h−1g−1)α|o = (τ ∗h−1)α|o = α|m, for any g ∈ G,
m ∈ M and assuming ho = m. Obviously l(α̃) = α. The other part of the lemma comes
from the fact that the map (Ao)

∗ commutes with exterior product.

By this lemma, we have a derivative δ on (Λpn∗)K to make this diagram commutes.

(Λpn∗)K −−−→ Ωp(M)G

δ
y d

y
(Λp+1n∗)K −−−→ Ωp+1(M)G
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Proposition 2.5. δ is determined by 3

δω(X0, ..., Xp) =
∑
i<j

(−1)i+jω([Xi, Xj]n, X0, ..., X̂i, ..., X̂j, ..., Xp)

ω ∈ (Λpn∗)K , X0, ...Xp ∈ n and [Xi, Xj]n is the projection of [Xi, Xj] into n along r. Then
{(Λpn∗)K , δ} ' {H(M)G, d} ' {H(M), d}.

Proof. Let ω̃ be ω’s image in Ωp(M)G as we assumed before. For X0, ...Xp ∈ n, define X̃i to
be vector fields on M by X̃i|m = (Am)∗Xi.

dω̃(X̃0, ..., X̃p) =

p∑
i=0

(−1)iX̃iω̃(X̃0, ...,
ˆ̃Xi, ..., X̃p) +

∑
i<j

(−1)i+jω̃([X̃i, X̃j], X̃0, ...,
ˆ̃Xi, ...,

ˆ̃Xj, ..., X̃p)

Because ω̃ is an invariant form, LXi
ω̃ = 0.

X̃iω̃(X̃0, ...,
ˆ̃Xi, ..., X̃p) = LX̃i

(ω̃(X̃0, ...,
ˆ̃Xi, ..., X̃p)

=

p∑

j=0, j 6=i

ω̃(X̃0, ...,
ˆ̃Xi, ..., [X̃i, X̃j], ..., X̃p)

Sum them and we get

dω̃(X̃0, ..., X̃p) = −
∑
i<j

(−1)i+jω̃([X̃i, X̃j], X̃0, ...,
ˆ̃Xi, ...,

ˆ̃Xj, ..., X̃p)

Let Yi be the respective right invariant vector field on G of Xi. It is easy to see (Ao)∗Yi = X̃i

and (Ao)∗([Yi, Yj]) = [(Ao)∗Yi, (Ao)∗Yj]. In particular, [X̃i, X̃j]|o=(Ao)∗[Yi, Yj]|e. By the
convention of the definition of Lie algebra, [Yi, Yj]|e = −[Xi, Xj]. Hence we get [X̃i, X̃j]|o =
−(Ao)∗[Xi, Xj] = −(Ao)∗[Xi, Xj]n. It implies

δω(X0, ..., Xp) =
∑
i<j

(−1)i+jω([Xi, Xj]n, X0, ..., X̂i, ..., X̂j, ..., Xp).

Remark 2.6. Assume that K is connected. Let n = dimn. Then Λpn∗ is one-dimensional
and K acts on it by multiplying the determinant of Ad(k−1), k ∈ K. But K is also compact,

3This formula is different from that in [1] where there is an factor 1/(p + 1). It comes from the different
definition of exterior product.
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so the determinant is a homomorphism of K to a compact connected subgroup of R∗, i.e.
{1}. Therefore K acts on Λpn∗ trivially and dim(Λpn∗)K = 1. So there is nonzero invariant
form of degree of n on M , and it is nonzero everywhere. It implies that M is orientable. In
particular, G/T is orientiable.

We consider the special case that G acts on G. Now r = 0, n = g. Because G acts on itself
by both left and right action, we have a bi-invariant representive in every cohomology class
by averaging: ∫

G

∫

G

(L∗g)(R
∗
h)ωdgdh

We denote the set of bi-invariant forms Ω(G)bi. Similarly we have

Lemma 2.7. As cochains, {Ω(G)bi, d} ' {Ω(G), d}
The value of a bi-invariant form at e must be Ad(G)-invariant, and similarly we have,

Lemma 2.8. As linear spaces, (Ωp(G))bi ' (Λpg∗)G. Furthermore, (Ω(G))bi ' (Λg∗)G as
rings.

We can also define the derivative δ on Λg∗ to make it a cochain which is isomorphic to
{Ω(G)bi, d}. The explicit formula of δ for has been given by proposition 2.5.

Proposition 2.8. δ = 0 for Λg and Hp(G) ' (Λpg∗)G.

Proof. For any ω ∈ (Λpg∗)G, X,X1, ..., Xp ∈ g

ω(X1, ...Xp) = (Ad(exp(−tX))ω)(X1, ...Xp) = ω(Ad(exp(tX)X1, ...Ad(exp(tX)Xp)

or taking its derivative

ω([X,X1], ...Xp) + ... + ω(X1, ..., [X,Xp]) = 0

Sum several such identities with suitable coefficients

i−1∑
j=0

(−1)j+1ω([Xi, Xj], X0, ..., X̂i, ..., X̂j, ..., Xp) = 0

and
p∑

j=i+1

(−1)jω([Xi, Xj], X0, ..., X̂i, ..., X̂j, ..., Xp) = 0

Then multiply by (−1)i and sum over i,

δω = 0
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This proposition implies H((Λg∗)G) = (Λg∗)G and hence Hp(G) ' (Λpg∗)G.

Therefore it is easy to compute H(T ), the cohomology of maximum tours. T is an Abelian
Lie group, Ad(T ) acts on T trivially. We have

Theorem 2.9. As a W -module, H(T ) is algebraically isomorphic to Λt∗.

3 The cohomology of flag manifold

We use Morse theory [4] to compute the cohomology of the flag manifold G/T as linear
spaces. Then by the character of representation of Weyl group we compute the cohomology
of G/T as W-module. Finally we compute the cohomology of G/T as algebra with Borel’s
theorem[5].

Recall that a real valued function f on a differential manifold is call Morse Function if
and only if it has nondegenerate Hessian at every critical point (df |x = 0).

Choose a regular elements H0 ∈ t and define positive roots about H0 . Define a function
f : G/T → R by

f(gT ) =< Ad(g)H0, H0 >

It is obviously well-defined. Now we find the critical points of f . G acts on G/T , and we
define AhT : G → G/T by A(g) = ghT . For X ∈ g, let X̃ be a vector field on G/T such
that X̃|gT = (AgT )∗X. Because G is a fibre bundle on base space G/T with fibre T, (AgT )∗
is surjective for any gT .

Lemma 3.1. The set of critical points of f in G/T is W , the Weyl group of G.

Proof.

X̃f(gT ) =
d

ds
|s=0 < Ad(exp(sX)g)H0, H0 >

=
d

ds
|s=0 < Ad(g)H0, Ad(exp(−sX))H0 >

=< Ad(g)H0, [H0, X] >

Since the centralizer of H0 in g is exactly t, ad(H0): m → m is a bijective. So gT is a critical
point of f if and only if < Ad(g)H0, m >= 0. This means Ad(g)H0 ∈ t. Recall the bijective:

ĩ : t/Ad(W ) → g/Ad(G) .

Hence there is a wT ∈ W ⊂ G/T such that Ad(w)H0 = Ad(g)H0. Then gw−1 ∈ T ⊂ N(T )
and gT ∈ W . So the critical points of f are wT , for w ∈ W .
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Let X1, X2, ..., X2v be the orthogonal basis of m in the section 0. Because (AwT )∗H =
d/ds|s=0exp(sH)wT= d/ds|s=0wexp(sAd(w−1)H)T = d/ds|s=0wT = 0, ∀H ∈ t. The values
of X̃i at wT form a basis for the tangent space. We can compute the Hessian of f at wt
about this basis.

Lemma 3.2. f is a Morse function on G/T

Proof.

hij(wT ) = X̃iX̃jf(wT )

=
d

ds
|s=0 < Ad(exp(sXi)w)H0, [H0, Xj] >

=< [Xi, Ad(w)H0], [H0, Xj] >

By Chevalley’s basis, hij = 0 if i 6= j. Otherwise,

hii(w) = −αi(Ad(w)H0)αi(H0)

Ad(w)H0 is also an regular element in t, so the Hessian is nonsingular. Because αi(Ad(w)H0) =
Ad(w−1αi)H0, the number of negative eigenvalues equals twice the number m(w) of positive
roots α such that w−1α is again positive.

By the main theorem of Morse Theory, we get

Theorem 3.3. The Poincare polynomial of G/T is
∑

w∈W u2m(w).

Proof. The morse function f on G/T shows G/T has the homotopy type of a CW-Complex
whose cells are all even-dimensional. Then dimHn(G/T ) = number of cells of dimension n,
if n is even. Otherwise dimHn(G/T ) = 0. It also implies that H(G/T ) is a commutative
ring.

Corollary 3.4. Hodd(G/T ) = 0 and Hodd(G/T ) = dim(G/T ) = χ(G/T ) = |W |.

We define an action of W on G/T,

w(gT ) = gw−1T, w ∈ W, gT ∈ G/T

It’s well-defined, because if we choose other representatives of w and gT , say wt1 and
gt2T , then wt1(gt2T ) = gt2t

−1
1 w−1T = gw−1Ad(w)(t2t

−1
1 )T = gw−1T . We also define the

action of Weyl Group on H(G/T ),

w(ω) = (w−1)∗ω, w ∈ W,ω ∈ H(G/T )

12



It is easy to see that it is a left action.

Theorem 3.5. As a W -module, H(G/T ) is isomorphic to the regular representation of W

Proof. The Lefschetz number of the mapping w on G/T is,

dimG/T∑
i=0

(−1)iTrace(w∗|Hi(G/T )) =
∑

i even

Trace(w∗|Hi(G/T )) = χH(G/T )(w
−1)

If w 6= e, there is no fixing point on G/T . By Lefschetz fixing point theorem, the Lef-
schetz number and hence the character of representation G(H/T) are zero if w 6= e. If
w = e, χH(G/T )(w

−1) = dimH(G/T ) obviously. So H(G/T ) is isomorphic to the regular
representation of W .

We also want to determine the structure of H(G/T ) as a ring. Recall the graded ring S
of polynomials in t and its ideal I generated by the W -invariant polynomials of positive
degrees.

Theorem 3.6. (Borel) There is a degree-doubling W -equivalent ring isomorphism

c̃ : S /I → H(G/T )

In the other words, H(2) ' H(G/T ), where H(2) is H with the grading degrees doubled.

Proof. We define the mapping c as: first for any λ ∈ t∗, extended to a functional on g by
making it zero on m, define a two-form ωλ on m by

ωλ(X,Y ) = λ([X,Y ])

Ad(t)(ωλ)(X,Y ) = λ([Ad(t−1)X,Ad(t−1)Y ]) = λ(Ad(t−1)([X,Y ])) = λ([X,Y ]), Hence ωλ is
an Ad(T )-invariant form. By the discussion in section 2, we know that it corresponds to a
G left-invariant form ω̃λ. Now we have a mapping from t∗ to H2(G/T ) and we should check
that it is W -equivalent. For any w ∈ W , we choose a representative w1 in G.

((w−1)∗ω̃λ)|eT = (w−1)∗(ω̃λ|wT ) = (w−1)∗(τw−1
1

)∗(ω̃λ|eT )

We have a commutative diagram,

G
π−−−→ G/T

Ad(w−1
1 )

y
y τw−1

1
◦ w−1

G
π−−−→ G/T
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Therefore ((w−1)∗ω̃λ)|eT = ω̃Ad(w−1
1 )∗λ|eT = ω̃wλ|eT . Because the actions of G on G/T and

W on G/T are commutative, we know that (w−1)∗(ω̃λ) is also left-invariant. So (w−1)∗ω̃λ =
ω̃wλ.

4 This verifies that λ → ω̃λ is W -equivalent. Define c(λ) = [ω̃λ] ∈ H2(G/T ) and
it is also a W-equivalent mapping. This extends to a W -equivalent degree-doubling ring
homomorphism

c : S → H(G/T )

Since H(G/T ) is the regular representation of W , its W -invariants are one-dimensional and
therefore H0(G/T ). So any f ∈ S W with nonzero degree is killed by c and I is in the
kernel of c. We have a mapping

c̃ : S /I → H(G/T )

In section 1, we have known that dimS /I = |W |. In order to prove that it is an isomor-
phism we only need to prove it is injective. Because S = H ⊕I , we will prove the theorem
by showing that the restriction of c to H is injective.

First we start in the top dimension. DimH v = 1 and H 2v = span{Π} where Π =∏
α∈∆+ α is the primordial harmonic polynomial. We evaluate c̃(Π) explicitly. For any

positive root αi, write ωi for ωαi
. If ω1 ∧ ... ∧ ωv is not zero, then the invariant form

ω̃1∧ ...∧ ω̃v is nonzero at any point of G/T and hence of nontrivial cohomology class because
dimG/T = 2v. Hence c̃(Π) = [ω̃1∧...∧ω̃v] 6= 0. So we only need to show that ω1∧...∧ωv 6= 0.
We use Xi’s as the basis of m.

ω1 ∧ ... ∧ ωv(X1, X1+v, ..., Xv, X2v)

=
∑

σ∈S2v

sgn(σ)ω1(Xσ(1), Xσ(1+v))...ωv(Xσ(v), Xσ(2v))

=
∑

σ∈S2v

sgn(σ)α1([Xσ(1), Xσ(1+v)])...αv([Xσ(v), Xσ(2v)])

Now αi([Xσ(i), Xσ(i+v)]) = 0 unless [Xσ(i), Xσ(i+v)] ∈ t. So the σth term is nonzero only if σ
permutes the pair πi = i, i + v. Sgn(σ) cancels the sign induced by switching members in
each pair. Hence

ω1 ∧ ... ∧ ωv(X1, X1+v, ..., Xv, X2v)

= 2v
∑
σ∈Sv

α1(Xσ(1), Xv+σ(1))...αv(Xσ(v), Xv+σ(v))

= 2v
∑
σ∈Sv

α1(Hσ(1))...α1(Hσ(1))

= 2v∂1...∂vΠ

4It is different from the formula in [1].
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Here ∂i = Hi ∈ (t∗)∗ = t. We have a perfect pairing

Dv ⊗S v → R

and by the definition of the action of W on t and t∗ the pairing is W -invariant. There must
exist polynomials in Dv such that pair nontrivially with Π. But any irreducible W -module
can only pair nontrivially with its dual, so these polynomial which pair nontrivially with
Π must also transforms as the sign representation of Weyl group. Because S v ' (Dv)∗ as
W -modules there is only one copy of the sign representation in Dv, which is afford by ∂1...∂v.
Therefore ∂1...∂vΠ 6= 0. This complete the proof that c̃(Π) 6= 0.

We now inductively assume that c̃ : H k → H2k(G/T ) is injective for k ≤ v. Let
V = H k−1∩kerc̃. Both H k−1 and kerc̃ are W -invariant, so does V. The sign representation
does not occur in H k−1, so there is positive root α whose corresponding refection sα in Weyl
Group does not act by −I on V . The eigenvalues of the action of sα on V can only be 1 or
−1. Decompose V = V+⊕V− according to the eigenspaces of sα. So if V 6= 0 then V+ 6= 0, so
take f ∈ V+. Now c̃(αf) = c̃(α)c̃(f) = 0, and αf is in degree k, so we must have αf ∈ I by
the induction hypothesis. Choose a basis {h1, ..., h|W |} in H such that h1, ..., hr sα-skew and
the rest sα-invariant. By theorem 1.5, we can write αf =

∑
hiσi with σi W-invariant. Here

σi should have positive degrees because suppose we have αf =
∑

hjσj + h with degσj > 0
and h ∈ H , then h ∈ I ∩I = 0. Since αf is sα-skew, the sum only goes up to r. Now for
i ≤ r, the polynomial hi must vanish on the zero set of α and could be written as hi = αh

′
i

for some h
′
i ∈ S . Therefore f =

∑r
i=1 h

′
iσi ∈ I ∩H = 0 and f = 0. Hence V = 0 and by

induction c̃ is injective on H .

4 The cohomology of a compact Lie group

Consider the map Ψ : G/T ×T → G given by Ψ(gT, t) = gtg−1. It is well-defined. The weyl
group W acts on T by conjugation and on G/ by w·gT = gn−1T , where n is any representative
of w in G. Hence W acts on H(G/T × T ) = H(G/T ) × H(T ). Since Ψ(gn−1T, wtw−1) =
Ψ(gT, t), the image of any form of G by ψ∗ is invariant by the action of W . So ψ∗ induced
a map H(G) → [H(G/T )×H(T )]W . We will show that it is a isomorphism of graded rings.

Proposition 4.1. ψ∗ : H(G) → [H(G/T )×H(T )]W is an isomorphism of graded rings

Proof. First, we prove that it is an injective map. This can be shown by computing the
degree of Ψ. So we need to choose the orientations of G, T and G/T . Choose orientations for
m and t and combine them we get an orientation of g. Extend elements of the Lie algebra to
left invariant vector fields, we get both orientations for G and T . Recall that G acts on G/T
and (AeT )∗ is an isomorphism between m and TeT (G/T ). Let (AeT )∗ gives the orientation of
TeT (G/T ). Then we define the orientation of each point of G/T by the action of G, because
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the determinant of Ad(T )|m can only be 1 this choice is well-defined. Explicitly, for any point
gT ∈ G/T , we choose a representative g in G identify m with the tangent space TgT (G/T )
by

X → XgT =
d

ds
g(expsX)T |s=0, X ∈ m

And for any point g ∈ G, we identify g with the tangent space Tg(G) by

X → Xg = (Lg)|∗X, X ∈ g

Similarly we identify t with the tangent space Tt(T ). These identifications are consistent
with the orientations defined above. We compute the derivative (Ψ)∗|(gT,t)

(Ψ)∗|(gT,t)(XgT , 0) =
d

ds
g(expsX)t(exp− sX)g−1|s=0

=
d

ds
gtg−1[(expsAd(gt−1)X)][(exp− sAd(g)X]|s=0

=
d

ds
gtg−1[I + sAd(g)(Ad(t−1 − 1)X + O(s2)]|s=0

= [Ad(g)(Ad(t−1)− I)X]|gtg−1

For H ∈ t,

(Ψ)∗|(gT,t)(0, Ht) =
d

ds
gt(expsH)g−1|s=0

=
d

ds
gtg−1[(expsAd(g)H)]|s=0

= [Ad(g)H]|gtg−1

Hence under the orientation-preserving identifications, (Ψ)∗|(gT,t) is

(Ad(g))(Ad(t−1)− I)⊕ (Ad(g)) : m⊕ t → g = m⊕ t

G and T are connected and compact, we must have detAd(g) = 1. And we know that
(Ad(t−1)− I) is a map from m to m. Hence

det(Ψ)∗|(gT,t) = det(Ad(t−1)− I)|m = det(I − Ad(t)|m),

since detAd(t)|m = 1.
We find a regular value for the map Ψ. Let t0 be a generic element in T whose powers is

a dense set of T . Ψ−1(t0) = {(gT, t) : gtg−1 = t0}. Recall the bijective map

i : T/Ad(W ) → G/Ad(G)
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Therefore if gtg−1 = t0, then there is an element wT in Weyl group such that wtw−1 = t0.
And any g′ ∈ G such that g′tg′−1 = t0 must be in N(T ) because t0 is generic. No element in
W acts on T trivially. Hence Ψ−1(t0) = {(wT, w−1t0w) : wT ∈ W}.

We next show that Ψ preserves the orientation at each point in Ψ−1(t0). By the Chaval-
ley’s basis we can compute the determinant of (Ψ)∗. In each subspace span{Xi, Xi+v},
Ad(w−1t0w) has two eigenvalues zi, z̄i such that |zi| = 1. Because t0 is generic, w−1t0w is
also generic and zi 6= 1.

det(Ψ)∗|(wT,w−1t0w) =
∏

i

(1− zi)(1− z̄i) =
∏

i

2(1−Re(zi)) > 0

This shows that Ψ preserves orientation at each point in Ψ−1(t0). Hence the degree of Ψ is
|Ψ−1(t0)| = |W |. By the following lemma, we prove that Ψ∗ is injective.

Lemma 4.2. Suppose f : M → N is a smooth map between two compact oriented manifolds
of the same dimension n. If degf 6= 0, f ∗ is an injective map for H(N) to H(M).

Proof. Suppose ω ∈ Hp(N) is a nonzero cohomology class. By Poincaré duality, there is
α ∈ Hn−p(N) such that ∫

N

ω ∧ α 6= 0

Hence ∫

M

f ∗ω ∧ f ∗α = degf ·
∫

N

ω ∧ α 6= 0

If f ∗ω is exact, since f ∗α is closed f ∗ω ∧ f ∗α is also exact. It is a contradiction.

Then we prove that H(G) and [H(G/T )×H(T )]W have the same dimension. Hence it is an
isomorphism. Recall that for any compact Lie group, there is an invariant integration. We
can construction the integration by the bi-invariant form. By lemma 2.7, for any compact
connected Lie group with given orientation there is a unique bi-invariant form ω of the top
degree whose integral over the Lie group is one. Hence we can define the invariant integration
of a function f of G by ∫

G

fdg ≡
∫

G

fω

Let ωG/T be the unique left-invariant form of top degree whose integral over G/T is one.
Now ωG, ωT , ωG/T are all left-invariant. By the identification, we have

Ψ∗ωG|gtg−1 = (det(Ψ)∗|(gT,t))ωG/T |gT ∧ ωT |t
Therefore we have the pull-back formula for any smooth function of G.

∫

G

fωG =
1

|W |
∫

G/T×T

f ◦ ψ(gT, t)det(I − Ad(t)|m)ωG/T ∧ ωT
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If f is an invariant under conjugation of G, we get Weyl integration formula:
∫

G

fωG =
1

|W |
∫

T

f(t)det(I − Ad(t)|m)ωT

Take f = 1, we get ∫

T

det(I − Ad(t)|m)ωT = |W |.

Let f be a function of G defined by f(g) = det(I+Ad(g)). By decomposing det(I+Ad(g))
into the sum of determinants of 2dimG matrixes, we find that f is the trace of Ad(g) acting
on Λg. Hence, by proposition 2.8

dimH(G) = dim(Λg)G

By the orthogonal relation of characters, the number of trivial representation appearing
in a representation equals the inner product of this representation’s character with trivial
character.

dimH(G) =

∫

G

det(I + Ad(g))ωG

=
1

|W |
∫

T

det(I + Ad(t))det(I − Ad(t)|m)ωT

=
2dimT

|W |
∫

T

det(I − Ad(t2)|m)ωT

The squaring map S on T is a 2dimT -fold covering map. So the degree for squaring map is
2dimT and S∗ωT = 2dimT ωT .

2dimT

|W |
∫

T

det(I − Ad(t2)|m)ωT =
2dimT

|W |
∫

T

det(I − Ad(t)|m)ωT = 2dimT

Hence dimH(G) = 2dimT . On the other hand, H(G/T ) is the regular representation of W .

dim[H(G/T )⊗H(T )]W =
1

|W |
∑

w

χH(G/T )(w)χH(T )(w)

=
1

|W |χH(G/T )(e)χH(T )(e)

= dimH(T ) = 2dimT

Hence [H(G/T )⊗H(T )]W and H(G) have the same dimension and this proposition holds.

We identify H(G/T ) with H2 and H(T ) with Λ. From Solomon’s theorem in section 2, we
get the main result

18



Theorem 4.3 The cohomology ring H(G) with real coefficients is a bigraded exterior algebra
with generators in bi-degrees (2mi, 1), for 1 ≤ i ≤ l.

Example 4.4 We give a computation of the cohomology of U(n). For G = U(n), dimG = n2

and dimt = n. We can choose a basis {H1, ..., Hn} of t and then Weyl group which is
isomorphic to Sn acts on the basis by permutation. Let {x1, ..., xn} be the dual basis of t∗.
Then S W is the set of symmetric polynomials in n variables. We know that any symmetric
polynomials is a polynomial of elementary symmetric polynomials. So the F1, ..., Fn are
the n elementary symmetric polynomials in n variables. Hence mi = i − 1, 1 ≤ i ≤ n.
DimH(G) = 2n. There are n cohomology classes ωi ∈ H2i−1(G) such that ωi1 ∧ ...∧ωik form
a basis of H(G) where 1 ≤ i1 < ... < ik ≤ n, 0 ≤ k ≤ n.
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